ROLES OF LOG-CONCAVITY, LOG-CONVEXITY, AND GROWTH ORDER IN WHITE NOISE ANALYSIS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Log-concavity, Log-convexity, and Growth Order in White Noise Analysis

In this paper we will develop a systematic method to answer the questions (Q1)(Q2)(Q3)(Q4) (stated in Section 1) with complete generality. As a result, we can solve the difficulties (D1)(D2) (discussed in Section 1) without uncertainty. For these purposes we will introduce certain classes of growth functions u and apply the Legendre transform to obtain a sequence which leads to the weight seque...

متن کامل

Log-concavity, Log-convexity, and Growth Order in White Noise Analysis

Being motivated by the work of Cochran et al. on the Gel'fand triple E] (L 2) E] , we are led to nd elementary functions to replace the exponential generating functions G and G 1== for the characterization of generalized and test functions. We deene the Legendre transformù for u in C +;log and the L-function Lu when u 2 C +;log is (log, exp)-convex. We show that u is equivalent to Lu. The dual ...

متن کامل

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

Log-convexity and log-concavity of hypergeometric-like functions

We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...

متن کامل

Log-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations

Let Pn,k be the number of permutations π on [n] = {1, 2, . . . , n} such that the length of the longest increasing subsequences of π equals k, and let M2n,k be the number of matchings on [2n] with crossing number k. Define Pn(x) = ∑ k Pn,kx k and M2n(x) = ∑ k M2n,kx . We propose some conjectures on the log-concavity and q-log-convexity of the polynomials Pn(x) and M2n(x).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Infinite Dimensional Analysis, Quantum Probability and Related Topics

سال: 2001

ISSN: 0219-0257,1793-6306

DOI: 10.1142/s0219025701000498